
Variational Continuous Assimilation of TMI and SSM/I Rain Rates: 
Impact on GEOS-3 Hurricane Analyses and Forecasts 

Arthur Y .  Hou*, Sara Q. Zhang', Oreste Reale,* 

3ational Aeronautics and Space AdministratiodGoddard Space Flight Center, Greenbelt, Maryland. 
+Science Applications International Cop., Beltsville, Maryland. 
'University of Maryland Baltimore County, Baltimore, Maryland. 

We have developed a variational continuous assimilation (VCA) algorithm for precipitation assimilation 
and examined its effectiveness in using 6-hrainrates fi-om TRMM Microwave Imager (TMQ and Special 
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to other variational techniques, this scheme uses moisture and temperature tendency corrections as the control 
variable to offset model deficiencies. For rainfall assimilation, forecast model errors are of special concern since 
model-predicted precipitation is based on parameterized moist physics, which can have substantial systmdtic 
errors. 

We performed parallel assimilation experiments with and without rainfall data in the Goddard Earth 
Observing System Version 3 (GEOS-3) global data assimilation system @AS) to examine the impact 
precipitation data on analyses and forecasts of synoptic features ofprominent tropical weather systems using 
Hurricanes Bonnie and Floyd as case studies. Results show that assimilating 6-h TMI and SSMA surface rain 

rates leads to more realistic stom structures through improved rainfall analysis. Forecast experiments show that 
the improved analysis provide better initial conditions for 5-day trackprediction andprecipitation forecast. The 
improved forecast skills were confLrmed in asensitivity study that showed a systematic increase in forecast skills 
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and pressure are allowed to respond to an improved rainfall analysis. More generally, this VCA tendency 
correction procedure maybe incorporated as apart of an augmented control variable within the framework 
of a four-dimensional variational analysis or as a model error estimator in sequential analysis schemes. 
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Abstract 

We describe a variational continuous assimilation (VCA) algorithm for assimilating tropical rainfd 

data using moisture and temperature tendency corrections as the control variable to offset model 

deficiencies. For rainfall assimilation, model errors are of special concern since model-predicted 

precipitation is based on parameterized moist physics, which can have substantial systematic errors. This 

study examines whether a VCA scheme using the forecast model as a weak constraint offers an effective 

pathway to precipitation assimilation. 

The particular scheme we exarnine employs a"l+l" dimension precipitation observation operator 

based on a 6-h integration of a column model ofmoist physics from the Goddard Earth Observing System 

(GEOS) global data assimilation system @AS). In earlier studies, we tested a simplified version ofthis 

scheme and obtained improvedmonthly-mean analyses and better short-range forecast skills. This paper 

describes the full implementation ofthe 1+1D VCA scheme using background and observation error 

statistics, and examines how it may improve GEOS analyses and forecasts ofprominent tropical weather 

systems such as hurricanes. 

Parallel assimilation experiments with and without rainfall data for Hurricanes Bonnie and Floyd 

show that assimilating 6-h TMT and SSM/I surfice rain rates leads to more realistic storm features in the 

analysis, which, in turn, pro'vide better initial conditions for 5-day storm track prediction and precipitation 

forecast. These results provide evidence that addressing model deficiencies in moisture tendency may be 

crucial to making effective use of precipitation information in data assimilation. 
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1. Introduction 

Precipitation estimates f?om space-borne passive microwave instruments such as the TRMM 

Microwave Imager (TMI) and Special Sensor Microwavehager (SSMD) have been assimilated using 

avariety oftechniques to improve global atmospheric analyses and forecasts (e.g., Krishnamurti et al. 

1993, Tsuyulu 1997, Treadon 1997, Hou et al. 2000, Marecal and Mahfouf 2002). Currently, operational 

global weather forecast systems typically use amulti-dimensional variational scheme to optimize the initial 

condition of a forecast. These schemes assume forecast errors arising predominantly f?om uncertainties in 

the initial condition rather than deficiencies in the model. For precipitation assimilation, this assumption must 

be re-examined since rainfall in global models is based on parameterized moist physics with simplifjmg 

approximations, which canhave significant systematic errors (Randall et al. 2003). The fact that analyses 

in the tropics are sensitive to the treatment of diabatic processes (Trenberth and Olson 1988) suggests that 

the influence ofmodel errors are significant, ifnot dominant, in regions where observations are relatively 

sparse. 

Since systematic model errors can lead to poor forecasts even with perfect initial conditions, the 

influence ofmodel errors needs to be considered in order to assimilate precipitation idormation effectively 

in the presence of model biases. Typically, errors in physical parametenzations are projected as state- 

dependent systematic errors in forecast tendmcies, which are difficult to quantifywithout dense observation 

networks. The challenge of developing assimilation algorithms to account for systematic model errors is 

very much hindered by the lack of apriori knowledge of the nature of these errors. In the coming years 

more microwave rainfall data will become available from operational and research satellites, culminating 

to a constellation of 8 or more satellites to provide global rain measurements every 3 hours with the 

proposed Global PrecipitationMeasurement (GPM) mission in 2007. The ability to assimilate rainfall 

information effectively in the presence of forecast model biases will be crucial for realizing the full benefit 

from these observations. 

This study explores an alternative d a l l  assimilation scheme using forecast tendency corrections 

as the control variable within the general fixneework of variational continuous assimilation (VCA, Derber 
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1989) to compensate for model deficiencies. Since model-predicted precipitation is diagnostically linked 

to temperature and moisture tendencies associated with parameterized moist physics, a VCA-type of 

approach offers a natural framework for assimilating precipitation data using moisture andor temperature 

tendencies as the control variable. To test the effectiveness of such a scheme, we have developed a "1+1" 

dimensional (1+1D) variational algorithm to assimilate 6-h accumulated TMI and SSM/Itropical rainfall 

in the Goddard Earth Observing System (GEOS) global data assimilation system (DAS). The 1+1D 

designation refers to the forward model for precipitation being a 6-h integration of a column model of the 

GEOS moist physics with prescribed large-scale forcing from the full GEOS DAS. 

In earlier studies, before quantitative error estimates for microwave rain retrievals were available, 

we had tested the 1+1D scheme with several simplifications: (i) The cost function consisted only of the 

observation term, (ii) the correction was applied only to the model moisture tendency, and (iii) the moisture 

tendency correction has a prescribed vertical structure mimicking the Jacobian of the 6-h rain accumulation 

to moisture perturbations (Hou et al. 2000,2001). Results showed that, even with these simplifications, 

assimilating TMI and S S M  tropical rain rates together with total precipitable water (TPW) estimates using 

this procedure is effective inimpmving GEOS analyses and short-range forecasts. Notably, it improves not 

only precipitation and moisture fields but also related climate parameters such as clouds and atmospheric 

radiation fluxes, as verified against the top-of-the-atmosphere radiation measurements from Clouds and 

the Earth's Radiation Energy System (CERES) sensors and brightness temperatures for moisture-sensitive 

channels of High-resolution Mared  Radiation Sounder (HIRS) (Hou et al. 2001). 

This paper describes the 1 1 1  implementation ofthe 1+1D VCA scheme using background and 

observation errors together with augmented control variables including both moisture and temperature 

tendency corrections. Our previous work assessed the impact ofprecipitation assimilation on the monthly- 

mean 2" x 2.5" GEOS analyses and forecasts ( ibid), the present study focuses on the impact of assimilating 

6-h TMI and SSM/I rain rates on 1" x 1" GEOS-3 synoptic analyses and forecasts of two prominent 

hurricanes, Bonnie and Floyd, in the tropics. Section 2 outlines the general methodology. Section 3 

discusses implementation details and datausage in the GEOS-3 DAS. Section 4 describes the Bonnie and 

Floyd assimilation experiments. Sections 5 and 6 examine the impact ofprecipitation assimilation on 
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GEOS-3 analyses and forecasts, respectively. The results are summarized in Sec. 7. 

2. Methodology 

_. . 

Variational algorithms for precipitation assimilation typically seek to minimize a hctional that 

measures the misfit between the model-predicted rain and the observed rain with respect to a control 

variable to which the model rain is sensitive. The control variable may be the initial condition (as in a 

conventional 4D variational scheme), a model attribute (such as the forecast tendency in a VCA scheme), 

or some combination ofboth (e.g., Zupanski et al. 2002). Since analysis techniques are built upon the 

assumption that the underlying error statistics are random, unbiased, stationary, and normally distributed, 

it is crucial that biases in the forecast model be removed (Dee and Todling 2000). In the case of 

precipitation, errors in the model-predicted rain derived fiom parameterized physics are invariably state- 

dependent and systematic. In this study, we examine a 1+1D VCAprocedure to assimilate observed 

surface rain rates to estimate and correct for systematic errors in temperature and/or moisture tendencies 

within a 6-h assimilation cycle. The functional to be minimized is: 

where y” is the logarithm of the observed rain, and Hi s  the precipitation observation operator. (The 

logarithmic singularity is removed with a minimal threshold value of 0.01 mm d-’ .) R is the “observation” 

error covariance, which includes non-systematic errors in both observations and the forward model. Since 

precipitation is anon-negative quantity, a logarithmic transformation is used so that the observation error 

in terms of the relative error defined as B =u”/v’ (where y‘ is the true rain rate) has an approximately 

lognormal distribution. Note that with this transformation, for an unbiased observation, <& =1, andRy 

= log<Bjfj>, where i andj are row and column indices (Cohn 1998). The control variable, 6w, which 

is held constant w i t h  a 6-h window, consists of a temperature tendency correction, ST, and amoisture 

tendency correction on the pseudo-relative humidity, ti.&:, where 4: is the background saturation specific 
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humidity and the background can be a forecast or a pre-analysis (Sec. 3). The vector dimension of SW is 

2N, where N is the number ofvertical model levels. Q is the error covariance for aprior estimate of SW. 

For assimilating 6-h rain accumulation averaged over amodel grid, the model rain is estimated fi-om 

a 6-h integration of a nonlinear column model of GEOS-3 moist physics, My as a function of the state vector ._ - 

of temperature and specific humidity, x = (T, 4): 

where 4 denotes the partial derivative with respect to time, Fis  the net tendency due to processes other 

than moist physics prescribed fi-om a 3-h assimilation by the full GEOS-3 DAS fi-om the beginning of the 

analysis cycle (See Hou el al. 2000 for details). Included inFare contributions from dynamics, turbulence, 

radiation, and incremental analysis update forcing due to all observations except precipitation. The 

observation operator for surface rain, H i s  given by: 

AT h 

for 84 < O  (3) 
0 0  

where 34 is themoisture tendencyin specific humidity, &is the width ofthe analysis Window, and h is the 

model top. The forward model is constructed for time-accumulated rainfall rather than instantaneous rain 

rates since moist convection schemes used in global models are parameterized to represent ensemble 

averages of cloud and precipitation over a convective life cycle, dictating that some temporal and spatial 

averaging of the instantaneous observations at satellite fmtprint scales is necessary for physical consistency. 

Consistent with the use of a column model for surface precipitation, rain rates are assumed to be 

uncorrelated horizontally, in which case R reduces to a scalar, R, given by the variance of relative 

observation errors inretrievedrainrates (assumingneghgible random errors in the forwardmodel): viz., R 

= log[ 1 +( &)2], where d is the error standard deviation given by <( 8- 1)2>” for rain rates greater than 0.1 

mm h-’. Bauer et al. (2002) estimated that the error standard deviation of instantaneous TMIretrievals 

averaged to 60 km grids ranges from 20-50% at low rain rates (0.1 mm h-*) to 520% at high rain rates 
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(20 mm h-'). For 100 km averages, the errors are estimated to be less than 30% at low rain rates and 10% 

at high rain rates. Taking into account of additional errors arising from undersampling by TRMM 

overpasses in a 6-h interval on the order of 20-60% (Bell et al. 1990), d' is assumed to be 1550% for 

6-h TMI rain averaged to 1" latitude by 1 O longitude grids. In this study.d' is taken to be 0.3 for rain rates 

greater thanO.1 mm h-', below which cf is set to 0.7, reflecting greater uncertainties in relative errors at 

very low rainrates. These values are by no means definitive but provide areasonable starting point. Given 

the uncertainty in these estimates, the same d' values are used for SSh4/I rain rates. Even though the TMT 
retrievals are expected to be ofhigher qualitydue to its lower orbit, the differences between TMI and 

SSM/I are likely smaller than uncertainties in the intrinsic errors in each (William Olson, personal 

communication). 

_ _  _ _  

The model error covariance matrix, Q, for 6w is parameterized in terms of the background 

temperature and pseudo-relative humidity errors based on the statistics of observation-minus-forecast (0- 

F) residuals, with the assumption that the errors are uncorrelated in the vertical and between the variables. 

The transformation of the moisture variable from specific humidity to pseudo-relative humidityrenders Q 

implicitly a function oftemperature through the saturation humidity and more homogeneous in space and 

time (Dee and da Silva 2003). 

The solution to (1) is obtained byminimizingJ(6w) with respect to 6w using a quasi-Newton 

method. For a nonlinear observation operation, the gradient ofJmust be computed at each iteration. An 

advantage ofthe limited dimension of a column model is that the @ent ofJmaybe computednmerically 

using a standard perturbation method. At each iteration, the vertical structure of 6w is determined by Q 

and the Jacobian ofH. With Q consisting ofonly diagonal elements, the Hessian is positive definite, which 

guarantees convergence. 

Compared with other techniques, the 1+1D VCA scheme differs fiom nudging or physical 

initialization in that it is a statistical analysis within the optimal estimation h e w o r k ,  even though they all 

explicitlymowtheprognostic equations. As implemented in the GEOS DAS, the VCA scheme effectively 

operates as an online model bias estimation and correction for precipitation and moisture every 6 hours, 

similar in principle to the bias correction procedure described in Dee and Todling (2000). The main 
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differences are that in our case the bias estimation and correction are carried out throughout the model 

integration and that there is no apriori assumption that systematic errors in moisture tendency are slowly 

varying (for a fast process such as precipitation). A well-known limitation ofmany conventional analysis 

schemes is that rainfall data can not be assimilated at locations where the background rain is zero, leading 

to the underutilizing the available information. By contrast, through correction ofbiases in the background 

rain, the VCA scheme can overcome this limitation to make effective use of observations. In its 

generalization to four dimensions, the VCA scheme is similar to 4DVAR schemes that employ the forecast 

model as a weak constraint. As a technique for precipitation analysis, the VCA scheme differs fiom other 

schemes in that the VCA-based precipitation estimate is not a forecast product but is determined by the 

6-h rain accumulation fiom a continuous 4D data assimilation constrained by precipitation observations. 

3. Interface with GEOS-3 DAS and data usage 

The 1 +lD VCA procedure may be implemented as an online bias estimatiodcorrection scheme 

to improve the first-guess in an intermittent data assimilation system. But, in the GEOS-3 DAS, which uses 

an IAU scheme to distribute the influence of analysis increments as a constant forcing over the analysis time 

window (Bloom et al. 1996), it is natural to use the VCA scheme to estimate model tendency corrections 

based on precipitation data to be added to the IAU forcing due to other data types. This is accomplished 

byperformingthe 1+1D precipitation assimilation after a pre-analysis using the standard Physical-space 

Statistical Analysis System (PSAS, Cohn et al. 1998), which consists of amutivariate analysis ofwind, 

height, and surfice pressure, and aunivariate analysis ofmoisture using conventional observations, S S M  

surface wind speed and TPW data, and online temperature and moisture retrievals fiom TIROS 

Operational Vertical Sounder. This pre-analysis provides the large-scale forcing and IAU tendencies for 

the column model (2) and the background rain for quality control decisions. 

A distinctive feature ofthe GEOS-DAS is that the IAU scheme virtually eliminates any spin-up in 

the precipitation and evaporation in assimilation cycles (Schubert et al. 1993). The GEOS-3 DAS is an 

upgraded version ofthe GEOS system that uses an interactive mosaic-type land surface model (Koster and 
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Suarez 1993) and online temperature and moisture retrievals using TOVS radiances. The model rain 

consists of convective precipitation generated by the relaxed Arakawa-Schubert scheme with aKessler- 

type re-evaporation of falling rain and large-scale precipitation fi-om supersaturation. 

- In the GEOS-3 DAS, precipitation assimilation is implementedwiththe constraint that the column 

moisture does not depart by more than a few percent from the pre-analyzed TPW, which includes 

contributions fiom SSM/I data. This is accomplished by solving (1) with the additional term: ( #@')-2( q2, 
where, 

iZ = 7 ] @(z)dzdt , (4) 
0 0  

and #"= 0.05. The quasi-NewtonminimiZationalgorithmtypicallyconverges between 5 to 25 iterations. 

a. Sensitivity to temperature tendency adjustment 

The general formulation ofthe VCA scheme uses for control variables tendency corrections of 

temperature andmoisture, the input parameters for updating the moist physics at every time step. The 

corrections at each vertical level as given by (1) depend on the model error variance and the sensitivity of 

the observation operator for 6-h rain to the control variables. Since temperature analyses are typically more 

accurate than moisture analyses, the assumption that Q follows the error variances ofthe background state 

implies that the cost function is less responsive to 6Tthan &, unless the moist physics is more sensitive to 

temperature perturbations. Earlier studies have shown that moisture tendency corrections alone are effective 

for assimilating surface rain rates (e.g., Hou et al. 2001). Here we investigate the impact of extending the 

control variable to include temperature tendency corrections. 

We performed three parallel oMine experiments with (i) both moisture and temperature tendency 

corrections, (ii) moisture tendency correction only, and (iii) temperature tendency correction only. Figure 

1 shows that the solution to (1) is virtuallythe same with or without temperature tendency corrections, 

which are negligible, as seen in Fig. 1 b. Mmmmn g (1) using only temperature tendency corrections did not 

reduce the misfit between the model rain and the observed rain: The minimization yields 0.404 mm h" , 

. .  . .  
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virtually unchanged fi-om the background value of 0.408 mm h-', compared with the observed rain of 

0.0854 rnm h-'. Artificially inflating the model error to 2.5 times the background error standard deviation 

to allow the analysis to draw closer to data leads to 0.400 mm d-', which confinns the insensitivity of (1) 

to n. Based on these results, only the moisture tendency correction is used in the remaining study, which 

effectively reduces the dimension of the control variable by half. 

b. Data usage 

The single footprint, instantaneous surface rain retrievals fiom the TMI and two SSM/I (F13 and 

F14) sensors using the GPROF algorithm (Kummerow et al. 1996, Olson et al. 1996) are accumulated 

over 6 hours centered at analysis times (0000,0600,1200,1800 UTC) and averaged to 1" x 1" GEOS-3 

grids. As microwave retrievals over land are less reliable than those over oceans, we restrict the data usage 

to oceanic areas within 30"N and 30"S, subject to two online quality control (QC) checks based on the 

observation-minus-background (0-B) residuals in 6-h rain accumulation, where the background rain is 

obtained from (3) with 6w = 0. First, a goss check is applied to eliminate outliers with 0-B residuals 

greater than 5 rnm h-', as the minimization procedure would fail for excessively large 0-B values. Data 

rejectedbythis criterion typically account for less than 0.5 percent of all valid observations. Second, no 

minimization is performed unless the 0-B residual exceeds 1 mm in 6 hours (i.e., 0.17 mm h-'), so that data 

are ingested onlywhen the background is appreciably different fi-om the observed. Since low rain rates 

account for much ofthe observed and model precipitation, this minimum threshold greatlyreduces the 

computational cost without compromising the quality of the analysis. 

Since the 6-h precipitation observation operator is nonlinear, it is possible for the minimization 

procedure to produce excessively large moisture tendency corrections for amoderate change in rain rate. 

An after-analysis QC check is applied to the solution to (1) to prevent the temperature and humidity at the 

end of the 6-h column model integration, x6h, fi-om deviating fi-om the background values by more than a 

pre-determined amount. For moisture, the cutoff value is 2 standard deviations ofthe tropical-mean 0-F 

bias in specific humidity in negative 0-B cases and 3 standard deviations in positive 0-B cases. These 
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cutoff values are obtained empirically f?om online assimilation experiments based on RMS error reductions 

in daily tropical precipitation (relative to TMI and SSMA rain rates) and all-sky outgoing longwave 

radiation (against CERES measurements). The larger threshold value for positive 0-B cases reflects that 

the VCA scheme is more effective in reducing than enhancing the background rain. Typically, 20% af the 

number of minimizations performed are rejected by this afer-analysis check. 

The datausage at a single analysis time is illustrated in Table 1 for 1200 UTC 20 August 1998. Of 

10,480 valid TMI and SSM/I tropical observations averaged to 1 O x 1" model grids, the 0-B residual is 

non-zero at 7887 locations, including 5545 locations at which the model rain is within 0.17 mm h-' ofthe 

observed value and no minimization is performed. Ofthe 23 10 minimization solutions, 1787 are accepted 

by the after-analysis QC check. Altogether, 555 ofthe 7887 observations (roughly7%) are rejected by 

the two QC checks. Table 1 also confirms that the VCA scheme is effective in assimilating rain rates at 

locations where there is no background rain. However, the benefits in the GEOS-3 DAS are limited by that 

the background rain is zero at only 10% of all locations with observed rain. 

Figure 2 compares the background rain and the analyzed column model rain given by (1) against 

observations. In Fig. 2a are the background rain plotted against observations at 1072 'raining' grid 

locations at which the minimization was performed - excluded those that had no rain in either the 

background or the observation. Figure 2b shows the 944 analyzed rain rates accepted by the after-analysis 

QC check lying predominantly along the diagonal against observations, reflectingthe smaller observation- 

minus-analysis (0-A) residuals than the corresponding 0-B residuals in Fig. 2a. This shows that the 

continuous application of moisture tendency corrections over 6 h is effective in overcoming systematic 

errors in the column model to produce analyzedrain rates close to observations. The notable exception is 

the scatter at observed rain rates below 0.1 mm h-', which is a direct result of the larger errors assigned 

to these low rain rates (See Sec. 2) to prevent theminimization solution from over-fitting that data. The 

distinct transition in the character of analyzed rain rates in Fig. 2b suggests that the minimization solution is 

indeed responsive to observation error specification and that rainfall data usage can be improved as better 

quantitative error estimates become available. 
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4. Bonnie and Floyd assimilation experiments 

... 

A prominent atmospheric feature difficult to capture accurately in current global models and 

analyses is the tropical cyclone system with fine structures requiring aresolution better than one-sixth of a . 

degree to adequatelyresolve (Kurihara et al. 1990). Yet, an accurate depiction of such systems in analyses 

is crucial for providing realistic initial conditions for numerical weather forecasts and boundary forcing for 

nested regionalmodels. Since intense rainfall are associated with hurricane events, precipitation assimilation 

may be expected to directly affect the representation ofhumcanes in global systems. In this study we 

examine how assimilating tropical TMI and SSMn surface rain rates over oceans affects 1" x 1" GEOS-3 

analyses and forecasts oftwo distinctly different Atlantic storm systems - Bonnie and Floyd - from the 

1998- 1999 period. As atropical storm, Bonnie was characterized by anotably asymmetric vortex with 

a wind maximum to the northeast of the center, while Floyd was much less asymmetric in its early stages 

of development. For each storm, we performed two parallel assimilation experiments - one (PRECP) with 

and one (CNTRL) without TMI and SSMArainrates - for atwo-week period centered around the time 

when the system became a hurricane. 

Bonnie reached tropical storm intensity at 1200 UTC 20 August 1998 and subsequently became 

a hurricane with anearly complete eyewall by0000 UTC 22 August (Avila 1998). It eventuallymade 

landfall near Wilmington, North Carolina on 27 August. The assimilation experiments for Bonnie extend 

fi-om 15 August to 29 August. Floyd can be traced to atropical depression east of the Lesser Antilles on 

7 September 1999. The system intensified to atropical storm at 0600 UTC 8 September and upgraded 

to a hurricane by 1200 UTC 10 September near northen Leeward Islands (Pasch et a1 1999). Floyd made 

landfall near Cape Fear, North Carolina on 16 September, then moved on to New England. The Floyd 

experiments extend from 3 September to 17 September. 

5. Impact on analyses 
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Hurricane vortices in global analyses with limited spatial resolution are generally weak, overly 

smooth, and not as sharply defined compared with observations (Pu and Braun 2001). Rainfall assimilation 

is not expected to overcome this inherent limitation inmodel resolution. This section examines the extent 

to which assimilating TMI andSSM/I surface rain rates may improve the synoptic features ofBonnie and 

Floyd in 1" x 1" model GEOS-3 analyses. 

- - 

a. Track trajectory and intensity 

Figure 3 compares analyzed positions of the minimum surface pressure of Bonnie and Floyd at 12 

h intervals with the 'best track' published by the Hunicane Research Division (HEU3) ornational Oceanic 

and Atmospheric Administration (NOAA). Eachtrack traces the system fkom the tropical storm stage to 

the time just before landfall. The GEOS-3 tracks ofBonnie and Floyd, with or without rainfall data, are in 

general agreement with the best track to within the one-degree accuracy of analyzed positions, which are 

rendered to the closest integer degree in latitude and longitude. There are instances that rainfall assimilation 

improves the storm position by more than one degree, as for Bonnie at 1200 UTC 20 August 1998. 

The along-track sea-level pressure (SLP) minimum and 85 0 hPa vorticity are shown in Fig. 4. As 

noted earlier, hurricanes in global analyses are typically weak. In the early stages when Bonnie and Floyd 

are tropical storms, the minimum pressures in the CNTRL analyses are within 5 hPa of the best track 

values. But as the storms intensified to hurricane strengths, the limited resolution of 1" x 1" analyses cannot 

capture the rapid surface pressure deepening seeninpoint observations (Bonnie reached 954 hPa at 0000 

UTC 24 August 1998, and Floyd reached 921 hPa at 1200 UTC 13 September 1999). Figure 4 shows 

that rainfall assimilation yields slightly lower pressure minima and enhanced low-level cyclonic vorticity, 

suggestive of mat-@ ;nprovementS in the storm intensity throughout the hurricane stage. However, rainfall 

assimilation may not always lead to a lower sea-level pressure minirnm or stronger low-level vorticity for 

a variety of reasons. For one, its impact may be to relocate the storm center instead of strengthening a 

correctly-positioned storm, as inthe case ofBonnie at 1200 UTC 20 August 1998. Also, assimilationof 

rain rates fiom a partial satellite coverage that misses a major section of the storm (as during the early 
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stages of Tropical Storm Floyd) can lead to aliasing problems by modifylng the latent heating only in 

observedportion ofthe storm, thu  misrepresentingthe circulation pattern. These issues will require detailed 

analyses beyond the scope of this study. 

b. Precipitation and sea-level pressure 

The impact of assimilating TMI and SSMrain rates on mirfall analyses is manifest in Fig. 5, which 

shows reduced daily-meanroot-mean-square (rms) errors and improved spatial correlations within a 20" 

x 30" latitude-longitude moving domain along the storm tracks. The one exception is the result for 26 

August, at which time Bonnie was entirely north of 30°N, beyond the domain for rainfall assimilation in 

these experiments. The results show an overall improvement in both the intensity and spatial pattern of 

precipitation associated with the storm system. For rain rates averaged over the entire tropics for the 2- 

week assimilation period, the improvements are even greater. For example, in the case ofBonnie, rainfall 

assimilation yields a bias reduction of 6 1 % and a smaller error standard deviation by 33%, averaged over 

the entire tropics. 

Illustrated in Fig.6 are improved rainfall intensity and structure for Floyd at 1200 UTC 10 

September 1999. The storm center in the CNTRL analysis coincides with the best track position and 

remains unchanged with the addition of rainfall data. Relative to TMI and S S M  observations, the rms 

error of the CNTFU,rainfall analysis is 1.03 mm h'' over the domain shown in Fig. 6. M a l l  assimilation 

reduces therms error in the PRECIP analysis by2 1 % and increases the spatial correlation from 0.14 to 

0.64. The VCA algorithm is effective in removing the spurious rainfall centered around 66"W and 19"N 

in the CNTRL (Fig. 6b) and enhancing precipitation in the east and south quadrants of the hurricane vortex 

(Fig. 6c), as observed. Since precipitation assimilation directly alters the vertical motion field, the improved 

precipitation within the IAU analysis Wework  can have a substantial impact on the large-scale circulation, 

as shown in Fig. 6d. Averaged overthe domain shown in the figure, the spatial correlation between changes 

in the surface rain field and the 500 hPa omegavelocity is - 0.71. Also evident are the increased horizontal 

divergence at 200 hPa over the center of the storm and enhanced subsidence at 500 hPa in the surrounding 
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areas away fiom the hurricane vortex. Amore reahtic subsidence environment not onlypromotes amore 

confined hurricane structure but is also crucial for preventing the low-level moisture fi-om precipitating 

outside the storm, which is a common problem in global systems (as in the CNTRL). Typically, rainfall 

assimilation can modi @the horizontal divergent winds at 200 hPa by as much as 10 m s-l, which can have 

a large impact on short-range forecasts, which will be examined in Sec. 5. 

C. Storm structures 

Figure 7a shows CNTRL analyses of the 850 hPa geopotential height and wind speed for Bonnie 

at 1200UTC21 August, 12hoursbeforeBonniegainedhurricanestrength. Thestormcenterinfkrredfiom 

the minimum wind speed is in agreement, within the resolution uncertainty, with the best track position of 

19.5"N and 64.5"W. But the system is too weak with overlybroad features compared with observations 

(Avila 1998). The same quantities f?om the PRECIP analysis are shown in Fig. To, superimposed with the 

geopotential anomalybetween the two analyses, which is negative at the storm center and positive to the 

east and west, corresponding to a deeper and more contracted system with increased horizontal winds to 

the north ofthe storm center. This pronounced asymmetry is consistent with wind observations fiom ships 

and high-resolution low-cloud wind analysis (Avila 1998). Changes in these fields at other levels indicate 

an overall intensification of the storm in the lower troposphere and a slight weakening above the 

mid-troposphere, leading to amore realistic structure typical oftropical storm systems. These changes are 

evident in the vertical structure of a meridional cross-section through the center of Bonnie shown in Figs. 

8a and 8b. Compared with the CNTRT.,, the PRECIP analysis shows a better defined vortex structure with 

a distinct eye-like feature (identified by a column of low wind speed), amore pronounced warm-core in 

the mid-troposphere, stronger low-level winds to the north of the center, and an enhanced low-level 

vorticity maximum (by more than 40%), all features characteristic ofhurricane structures inferred fi-om 

in-situ observations (e.g., Anthes 1982). 

Hurricane vortices in global models are generally too weak at the low levels yet too strong at the 

upper levels, leading to an incorrectly placed wind maximum in the analysis compared with observations. 
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Rainfall assimilation using the VCA procedure strengthens the low-level winds wkle weakening winds 

between 600 P a  and 300 hPa, as can be seen in Fig. 8 although it is more evident in the zonal cross 

section (not shown). This downward displacement ofthe wind maximum (and thekinetic energymaximum) 

is similar to .what is often achieved by imposing an artificial ‘%bogus’’ vortex to improve hurricanes in analyses 

(e.g. Lord 1990). However, the bogusing techniquehas several limitations: It can be applied only to mature 

hurricanes; it does not perform well for highly asymmetric stom systems; and the specification of a moisture 

field consistent with the imposedvortex is aproblem (Pu and Braun 2001). Precipitation assimilation offers 

an alternative to bogusing in a way that is more consistent with model physics and applicable in early stages 

of storm development regardless of the azimuthal asymmetry. However, the benefit ofrainfall assimilation 

is currently limited by model resolutions. But, as models continue to evolve to finer resolutions, precipitation 

assimilation has the potential to be the method of choice for improving the realism of storms in analyses and 

early warning capabilities. 

In the case ofFloyd, the improvements are even more evident. Figures 7c and 7d show the 850 

hPa geopotential height and wind speed at 0000 UTC 1 1 September 1999, shortly after Floyd reached 

hurricane strength. The PREClP analysis shows a substantially stronger storm, with a clearly defined center 

coincidingwiththe best trackposition at 20.8”Nand 60.4”W. The 850 maheight anomalyis negative to 

the north of the storm center in the CNTRL, signifjmg a deepening and a northward shift. Figures 8c and 

8d show anear doubling in the strength of the low-level vorticity, a downward displacement of an enhanced 

low-level wind maxima, apronoui.lced warm core, and a well-defined eye-like feature in the column of 

low-speed winds. The impact of these improved structures on forecast is examined in the next section. 

6. Impact on forecasts 

Results in the previous section showed that rainfall assimilation can significantly m d f y  moisture, 

wind, and temperature analyses. To assess whether these changes in analyses are, in fact, improvements, 

we performed parallel Bonnie and Floyd forecasts initialized with PRECP and CNTRL analyses, with and 

without ramfall data, respectively. The initial conditions are from the early stages ofhurricane formation 

startingwith the first analysis level with a well-formed inner core namely, 1200 UTC 20 August 1998 for 
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Bonnie and 1200UTC 10 September 1999 for Floyd (Pasch et al. 1999). The forecasts were issued 12 

h apart over a two-day period. 

Comparisons of storm track forecasts with theN0A.A best track analysis are shown in Fig. 9 for 

Bonnie and Fig. 10 for Floyd. The impact ranges kom positive to near-neutral. Hurricanes in forecasts 

initialized with CNTRL analyses consistently move too fast along paths that are displaced eastward and 

northward relative to the best track. In the best cases (Figs. 9a and 1 Ob), forecasts initializedwith PRECP 

analyses show significant reductions in both spatial and temporal displacement errors. These tend to be 

associated with initial conditions with significant improvements in both the storm intensity and position. In 

other cases, forecast improvements reflect mostlyreduced errors in spatial locations rather than temporal 

displacements, as in Figs. 9b and 1 Oa. Other forecast expdments show improvements that fall within the 

ranges shown in Figs. 9 and 10. 

To verify that the improvements shown in Figs. 9 and 10 result directly from assimilating rainfall 

information in the initial condition, we varied the assigned weighting for the TMI and SSMA rain rates in 

the VCAprocedure to investigate how the resulting analyses afffect storm forecasts. In addition to CNTRL, 

and PRECP analyses (for which the precipitation observation error standard deviation, oo, is effectively 

infinity and 30%, respectively), we obtained two more PRECP analyses with oo = 80% and 250% and 

performed additional forecasts using them as initial conditions. Results for the 5-dayBonnie forecast issued 

from 1200 UTC 20 August 1998 are shown in Figs. 1 1. As the initial analysis is weighted more towards 

the TMI and SSM/I rain rates, there is a systematic improvement in the track forecast (Fig. 1 1 a) and an 

overall increase in the spatial correlation between the 5-day precipitation forecast and observations (Fig. 

1 lb). The exception is the rain forecast within the k s t  24 hours, in which case the forecast differences are 

likely too small to overcome measurement and samplmg uncertainties in rainfall observations. However, the 

overall results show a systematic increase in forecast skills as more rainfall information is retained in the 

initial state, suggesting that the improvements are dn-ectly attributable to the use ofrainfall data in the initial 

condition. 

Shown in Fig. 12 are two examples of therms errors and spatial correlations in 5-day precipitation 

forecasts issued from analyses with and without TMI and SSML rain rates. The Bonnie forecast (Figs. 12a 
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and 12c) was issued fi-om 1200 UTC 20 August 1998. The Floyd forecast (Fig. 12b and 12d) was 

initialized fi-om 0000 UTC 1 1 September 1999. In each case, the statistics are for a 20" latitude by 30" 

longitude moving domain along the analyzed storm track. Results show a general reduction in rms errors 

and a marked increase inspatial correlations. These improvements are also apparent in terms of the-: -.  

improved threat scores for different rain thresholds commonly used to assess quantitative precipitation 

forecast skills (QPFs, Wilks 1995). 

7. Summary and discussion 

We have described a 1+1D VCA algorithm for assimilating surface precipitation using the forecast 

model as a weak constraint and examined its effectiveness in using 6-h TMI and SSMD tropical rain rates 

to improve GEOS-3 analysis and forecasts. In its h l l  implementation the scheme uses temperature and 

moisture tendency corrections to compensate for model deficiencies. But the observation operator for 6-h 

rain accumulation proved to be insensitive to temperature tendency correction, and moisture tendency 

correction alone made an effective control variable since precipitation in models is diagnostically linked to 

the time-rate-of-change of atmospheric moisture. 

In earlier studies, we have shown that assimilating TMI and S S M  rain rates improves precipitation 

and related climate parameters such as radiative fluxes and cloud forcing in the GEOS analysis. This study 

focused on the impact ofrainfill assimilation on 1' x 1" GEOS-3 analyses and forecasts of synoptic features 

ofpromhent tropical weather systems using Hurricanes Bonnie and Floyd as case studies. For each storm, 

we performed two parallel assimilation experiments with and without rainfall data. Results show that 

assimilating TMI and SSM/I surface rain rates usingthe l+lD moisture-tendency-correction VCA scheme 

yields more realistic storm structures through improved precipitation analysis. Forecast experiments show 

that the improved analyses provide better initial conditions for 5-day track and precipitation forecasts for 

Bonnie and Floyd. The improved forecast skills have been substantiated in a sensitivity study that showed 

a systematic increase in forecast skills as more rainfall information was retained in the initial condition. The 
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improved forecasts provide evidence that the VCA scheme is capable of using rainfall data to improve 

analyses of prognostic model variables used to initialize the forecasts. 

Results ofthis study suggest that addressing model deficiencies inmoisture tendencymay be crucial 

to making effective use ofprecipitation observations in data assimilation. Moreover, since precipitation is 

a model-diagnosed quantity, it affects forecasts only through its d u e n c e  on model prognostic variables. 

During an assimilation cycle, the 111 benefit of precipitation data can be realized only if analyses ofwind, 

temperature, moisture, and pressure are allowed to respond to an improved rainfall analysis. In the GEOS- 

3 DAS, the prognostic model variables continually adjust to changes in precipitation and the associated 

latent hating over a 6-h assimilation window, in amanner similar to dynamic initialization as discussed in 

Sec. 3. In our work thus fa ,  the 1 +lD VCA scheme has been shown to be effective for assimilating rainfall 

data in the tropics, where the model precipitation is known to be sensitive to parameterized moist physics 

in avertical column. The effectiveness of such a column model approach to rainfall assimilation in the 

extratropics, where atmospheric processes are governed by multivariate quasigeostrophic dynamics, will 

require further investigation. 

- -  I 

As a technique for rainfall assimilation, the 1+ 1 D VCA scheme differs fiom nudging or physical 

initialization in that it is a statistical analysis within the optimal estimation h e w o r k ,  even though they all 

rn-the model’s prognostic tendencies. As implemented in the GEOS DAS, the VCA scheme effectively 

operates as an online model bias estimation and correction for precipitation and moisture every 6 hours. 

As such, the scheme is capable of assimilating precipitation observations at locations where the background 

rain is zero. More generally, VCA tendency conations may be included as apart of an augmented control 

variable withn the 4DVAR fi-amework or as a model error estimator in sequential analysis schemes. 
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Table 1. Data usage at tropical TMI+SSM/I observation locations at 1200 UTC 20 August 1998 

Observation 

Rain 

Rain 

No Rain 

Background Number of IO-BI > 0.17 IO-BI < 5.0 Accepted by 1q6'- 4'1 

Observations mm h-' mmh-' QC check 

Rain 1905 1102 1072 944 

No Rain 201 58 56 47 

Rain 5781 1182 1182 796 

20 

Subtotal 7887 2342 2310 1787 
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~ Figure Captions 

Figure 1. Minimization solutions to (1) with and without temperature tendency correction. (a) Solid circles 

show the solution for moisture tendency correction with both temperature and moisture tendency 

corrections as the control variable. Open circles are for the case with only moisture tendency corrections. 

(b) Solution for temperature tendency correction withboth temperature and moisture tendency corrections. 

The labels indicate the observed, background, and analyzed rain rates at this grid location. 

,._. - . 

Figure 2. (a) Background rain versus observations at 1200 UTC 20 August 1998. Shown are rain rates 

at 1072 grid !ocatims accepted by 043 QC checks for mh~zz i t ion .  Not included are locations with no 

rain in either the background or the observation. (b) Analyzed rain rates given by (1) accepted by after- 

analysis QC checks versus observations. The scatter at very low rain rates reflects the large error standard 

deviations assigned to observed rain rates below 0.1 mm h-' (See Sec. 2). 

Figure 3. Analyzed 12-hpositions ofthe minimum surface pressure ofBonnie andFloyd (rendered to the 

closest integer degree in latitude and longitude) fi-om CNTRL and PRECP analyses, compared with 

N O M  best track locations. The first analysis time of the track is marked for each storm. 

Figure 4. (a) Minimurn sea-level pressure (SLP) in mm d-' along the track of Tropical Storm Bonnie 

(dotted lines) and Hurricane Bonnie (solid lines). The open circles show the CNTRL analysis and the 

crosses are the PRECP analysis. (b) Same as (a) but forFloyd. (c) 850hPavorticityinunits of lo4 s-' 

along the Bonnie track. (d) Same as (c) except for Floyd. 

Figure 5. (a) Root-mean-square (rms) errors and spatial correlation of daily averaged rain rate over a 20" 

latitude and 30" longitude moving domain along Bonnie's track. The black and white bars refer to CNTRL 

and PRECP analyses, respectively. Combined M and SSM/I dailyrain rates are used for verification. 

(b) Same as (a) except for Floyd. 
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Figure 6.  (a) Combined TMI and SSM/I observations of surface rain in mm h-' at 1200 UTC 10 

September 1999. (b) Surface rain inmm h-' (shaded) and sea-level pressure inhPa (contours) in CNTRL 

at the same analysis time. (c) Same as (b) except for PRECIP analysis. (d) Changes in 500 hPa omega 

velocity in hPa d-' (shaded, with negative values indicating rising motion) and horizontal winds in m s-l at 

200 hPa between PRECIP and CNTRL analyses. The vector scale for 10 m s-' is given for reference. 

-. - - - 

Figure 7. Analyses of 850 Wageopotential height in m (thick line) and wind speed in m s-' (shaded). (a) 

CNTRL analysis at 1200 UTC 2 1 August 1998 for Bonnie. (b) Same as (a) but for PRECIP analysis. The 

thin contours show PRECIP minus CNTRL differences in 850 hPa geopotential height. (c) CNTRL 

afialysis for Floyd at 9000 LTC 1 1 September 1999. (d) Same as (c) but forPFU3CIP analyses with the 

thin lines showing 850 hPa geopotential height differences between PRECIP and CNTRL. 

Figure 8. Upperpanels: Meridional-vertical cross-sections at 65"W through the center ofBonnie at 1200 

UTC 21 August 1998. Shown are wind speed in m s-' (shaded), relative vorticity in s-' (thick lines at 

intervals of 3 x lo", with the zero contour omitted), and temperature in "C (thin lines). (a) CNTRL analysis. 

(b) PRECIP analysis. Lower panels: Similar cross-sections for Floyd at 60"W and 0000 UTC 11 

September 1999. (c) CNTRL analysis. (d) PRECIP analysis. 

Figure 9. Five-day Bonnie track forecasts. Triangles and squares mark forecasts (dashes) initializedwith 

CNTRL and PRECIP analyses, respectively. The storm positions are rendered to the closest integer degree 

in latitude and longitude. The circles show positions ofthe best track (solid). (a) Forecasts issued from 

1200 UTC 20 August 1998. (b) Forecasts issued from 1200 UTC 21 August 1998. 

Figure 10. Five-day Floyd track forecasts. Triangles and squares mark forecasts (dashes) initialized with 

CNTRL and PRECIP analyses, respectively. The storm positions are rendered to the closest integer degree 

in latitude and longitude. The circles show positions ofthe best track (solid). (a) Forecasts initialized from 

1200 UTC 10 September 1999. (b) Forecasts issued from 0000 UTC 1 1 September 1999. 

25 



Figure 11. Sensitivity of a 5-day Bonnie forecast from 1200 UTC 20 August 1998 to TMI and SSM/I 

rainfall information retained in the initial condition. (a) Comparison of 5-day track forecast with the N O M  

best track analysis. (b) Spatial correlations between 5-day precipitation forecasts and combined TMI and 

. SSM/I dailyrain rates. The legend identifies the forecasts by the error standard deviation for rain (a,) in 

the analysis used for initial condition. 

Figure 12. Root-mean-squar (m) mors and spatial correlations of 5-day precipitation forecasts initialized 

with CNTRT, analysis (black) and PREClP analysis (white). (a) Bonnie forecast issued fiom 1200UTC 

20 August 1998. (b) Floyd forecast issued from 0000 UTC 1 1 September 1999. The statistics are for a 

20" latitude by 30" longitude moving domak along the malyzed storm track. QPF Threat Scores for the 

Day 3 precipitation forecast are shown in (c) and (d) for Bonnie and Floyd, respectively. Ahigher Threat 

Score indicates greater forecast skills. 
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Figure 1. Minimization solutions to (1) with and without temperature tendency correction. (a) Solid circles 
show the solution for moisture tendency correction with both temperature and moisture tendency corrections 
as the control variable. Open circles are for the case with only moisture tendency corrections. (b) Solution 
for temperature tendency correction with both temperature and moisture tendency corrections. The labels 
indicate the observed, background, and analyzed rain rates at this grid location. 
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Figure 2. (a) Background rain versus observations at 1200 UTC 20 August 1998. Shown are rain rates at1 072 
grid locations accepted by 0-B QC checks for minimization. Not included are locations withno rain in either 
the background or the observation. (b) Analyzed rain rates given by (1) accepted by after-analysis QC checks 
versus observations. The scatter at very low rain rates reflects the large error standard deviations assigned 
to observed rain rates below 0.1 mm h' (See Sec. 2). 
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Figure 3. Analyzed 12-h positions of the minimum surface pressure of Bonnie and Floyd (rendered to the 
closest integer degree in latitude and longitude) from CNTRL and PRECIP analyses, compared with the 
N O M  best track locations. The first analysis time of the track is identified for each storm. 
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Figure 4. (a) Minimum sea-level pressure (SLP) along the track ofTropical Storm Bonnie (dotted lines) and 
Hurricane Bonnie (solid lines). The open circles show the CNTRL analysis and the crosses are the PREClP 
analysis. (b) Same as (a) but for Floyd. (c) 850 hPa vorticity along the Bonnie track. (d) Same as (c) except 
for Floyd. 
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Figure 5. (a) Root-mean-square (rms) errors and spatial correlation of daily averaged rain rate over a 20" 
latitude and 30" longitude moving domain along Bonnie's track. The black and white bars refer to CNTRL 
and PRECIP analyses, respectively. (b) Same as (a) except for Floyd. 
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d )  Velocity Differences (PRECIP minus CNTRL) 

Figure 6. (a) Combined TMI and SSML observations of surface rain in mm h-' at 1200 UTC 10 September 
1999. (b) Surface rain in mm h-' (shaded) and sea-level pressure in hPa (contours) in CNTRL at the same 
analysis time. (c) Same as (b) except for PRECIP analysis. (d) Changes in 500 hPa omega velocity in hPa 
d-' (shaded, with negative values indicating rising motion) and horizontal winds in m s-l at 200 hPa between 
PRECIP and CNTRL analyses. The vector scale for 10 m s-l is given for reference. 

32 



0 )  Bonn ie  (CNTRL). 12UTC 21Aug98  
/ 1 

C )  Floyd (CNTRL): OOUTC 11Sep99  

. . . . . . . . . . . .  

. . . . . . . . . .  .. . : .  ... .:. ... . :  .................................. 

.... 1. . . . . . . . . . .  . f .  .. I . .  

6 0 1  51v 5.1 5 1 1  

35 

30 

25 

20 

15 

1 0  

5 

Floyd (PRECIP): OOUTC 1 1 Sep99  

35 

30 

25 

20 

15 

10 

5 

2.5 

Figure 7. Analyses of 850 hPa geopotential height in m (thick line) and wind speed in m s-l (shaded). (a) 
CNTRL analysis at 1200 UTC 21 August 1998 for Bonnie. (b) Same as (a) but for PRECP analysis. The 
thin contours show PRECP minus CNTRL differences in 850 hPa geopotential height. (c) CNTRL analysis 
for Floyd at 0000 UTC 11 September 1999. (d) Same as (c) but for PRECP analysis with the thin lines 
showing 850 hPa geopotential height differences between PRECP and CNTRL. 
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c )  Flovd (CNTRL): OOUTC 11SeD99 d )  Flovd (PRECIPI: OOUTC. 11SeD99 

Figure 8. Upperpanels: Meridional-vertical cross-sections at 65"W through the center ofBonnie at 1200 UTC 
21 August 1998. Shown are wind speed in m s-l (shaded), relative vorticity in s-' (thick lines at intervals of 3 
x lo", with the zero contour omitted), and temperature in "C (thin lines). (a) CNTRL analysis. (b) PRECIP 
analysis. Lower panels: Similar cross-sections for Floyd at 60"W and 0000 UTC 11 September 1999. (c) 
CNTRL analysis. (d) PRECIP analysis. 
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Figure 9. Five-day Bonnie track forecasts. Triangles and squares mark forecasts (dashes) initialized with 
CNTRL and PRECIP analyses, respectively. The storm positions are rendered to the closest integer degree 
in latitude and longitude. The circles show positions of the best track (solid). (a) Forecasts issued from 1200 
UTC 20 August 1998. (b) Forecasts issued from 1200 UTC 21 August 1998. 
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Figure 10. Five-day Floyd track forecasts. Triangles and squares mark forecasts (dashes) initialized with 
CNTRL and PRECIP analyses, respectively. The storm positions are rendered to the closest integer degree 
in latitude and longitude. The circles show positions of the best track (solid). (a) Forecasts initialized from 
1200 UTC 10 September 1999. (b) Forecasts issued from 0000 UTC 1 1 September 1999. 

36 



0.8 , 

7ow 5w 1 2 3 4 5 
Forecast day 

Figure 1 1. Sensitivity of a 5-day Bonnie forecast fiom 1200 UTC 20 August 1998 to TMI and SSMhrainfall 
information retained in the initial condition. (a) Comparison of 5-day track forecast with the NOAA best track 
analysis. (b) Spatial correlations between 5-day precipitation forecasts and combined TMI and SSWI daily 
rain rates. The legend identifies the forecasts by the error standard deviation for rain (0,) in the analysis used 
for initial condition. 
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Figure 12. Root-mean-squar (rms) errors and spatial correlations of 5-day precipitation forecasts initialized 
with CNTRL analysis (black) and PRECIP analysis (white). (a) Bonnie forecast issued from 1200 UTC 20 
August 1998. (b) Floyd forecast issued from 0000 UTC 11 September 1999. The statistics are for a 20" 
latitude by 30" longitude moving domain along the analyzed storm track. QPF Threat Scores for the Day 3 
precipitation forecast are shown in (c) and (d) for Bonnie and Floyd, respectively. A higher Threat Score 
indicates greater forecast skills. 
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